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A B S T R A C T   

Identification of non-point sources of watershed pollution such as pesticide runoff is challenging due to spatial 
and temporal variation in landscape patterns of land use and environmental conditions. Regional case study 
monitoring investigations can document region-specific conditions and processes to inform managers about 
pesticide movement through watersheds. Additionally, modeling field-collected data within these contexts can 
be used to predict pesticide presence in un-sampled areas. During a 45 day period in the spring of 2019, we 
sampled sixteen coastal watersheds in Oregon, USA for current-use water-borne herbicides commonly used in 
forestland vegetation management. At 80 % of sampling locations, at least one of four commonly used herbicides 
was detected in integrative passive water samplers, with hexazinone and atrazine most commonly detected. In 
this study, we use total accumulation of detected compounds to compare relative detections with upstream 
management and environmental watershed variables using multiple linear regression. An additive effects model 
was developed using slope, herbicide activity notified during the sampling window, and recent clearcut harvest 
notifications to predict variation in total herbicide accumulation (R2 

= 0.8914). The model was then applied to 
predict concentrations in un-sampled watersheds throughout the Oregon’s coastal region at three watershed 
scales using Hydrologic Unit Codes (HUCs) 8, 10, and 12. Regional differences in predicted values were visu
alized using choropleth maps. Subwatersheds (HUC12) were grouped by subbasin (HUC8) and base mean pre
dicted values were compared to further quantify regional differences. Models predicted that south coast sites 
have higher than average herbicide concentrations, which aligned with field-collected data findings.   

1. Introduction 

Offsite movement of pesticides throughout watersheds is a universal 
concern for managers and scientists, especially in light of research on 
sublethal effects of low dose exposures to aquatic organisms. Ap
proaches to understand risk in these contexts vary, but a central chal
lenge is collecting sufficient data at appropriate scales and time intervals 
in a cost-effective manner to make informed decisions about how pes
ticides affect aquatic ecosystems. Monitoring results from field collected 
data can be useful not only to inform managers about transport within 
the sampled locations but also to predict concentrations in un-sampled 
areas through modeling (Holvoet et al., 2007). Commonly in land
scape scale research, multi-site comparisons and empirical modeling are 
implemented to record the influence of natural and anthropogenic 
variables - such as land-use, on in-stream conditions (Allan, 2004; Allan 
et al., 1997; Turner and Gardner, 2015). Such efforts can support better 
understanding of cumulative effects of land management practices on 

water quality, specifically pesticide concentrations in watersheds of 
differing sizes. 

Investigation into cumulative effects of intensive forestry on water 
quantity have found significant relationships between the scale of op
erations and their contribution to water quantity deficits in downstream 
waterways (Perry and Jones, 2017). Substantial research has focused on 
cumulative effects of many types of forestry practices (road construc
tion, clearcutting, planting, etc..), but less is understood about the ef
fects of multiple chemical applications within watersheds and the 
transport of chemical mixtures away from application sites (Clark et al., 
2009; Norris et al., 1991). Pesticide application on forestlands is often 
downplayed in comparison to agricultural applications based on the 
frequency of occurrence (herbicide applications take place 1–5 years 
after clearcutting versus multi-annual applications on agricultural 
lands) until replacement conifers are established. Most research con
cerning chemical applications on forestlands is focused on site-level 
effectiveness, and data gaps remain on the effects of chemical 
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applications across larger spatial scales or multiple watersheds within 
regions (Neary and Baillie, 2016). Exploring the effectiveness of man
agement practices at the site scale provides valuable and critical infor
mation, but looking at other larger scales may provide more accurate 
information on exposure by organisms within a watershed. Chemical 
applications in forestlands and agricultural lands take place in concert 
with other land use practices across the landscape, and should be 
considered within these contexts (Metcalfe et al., 2019; Norris et al., 
1991). Additionally, valuable and protected resources are found across 
multiple watershed scales, highlighting the importance of looking 
beyond site-scale impacts to understand catchment or watershed level 
effects. 

During late winter and spring, pre-emergent and site preparation 
herbicide treatments are commonplace in Oregon’s coastal forestlands. 
Chemical site preparation treatments accompany mechanical, manual, 
and fire-based methodologies as vegetation control measures that take 
place within the first year of the original cutting before reforestation 
occurs (Rose and Haase, 2006). Once trees have been planted, pre- 
emergent or “dormant applications” are utilized to control competing 
vegetation before conifer bud break takes place in late spring (Peachy, 
2020). Competing vegetation targeted in these applications range from 
herbaceous grasses and ferns to early successional woody species such as 
vine maple and alder. Dormant applications are commonly applied in 
mixtures to target a variety of early successional vegetation (Table 1). 
Rainfall during spring months in Oregon’s Coast Range is substantial, 
and many compounds used in vegetation management during this 
period are rainfall activated products. Resultant runoff events following 
forestland pesticide application are generally characterized as episodic 
exposures, wherein “pulses’’ of higher chemical concentrations move 
downstream followed by decreasing concentrations (Louch et al., 2017). 
The majority of forestry specific monitoring in the region has occurred 
during foliage applications occurring in the summer and fall months 
(Caldwell and Courter, 2020; Dent and Robben, 2000; Louch et al., 
2017), with monitoring during spring runoff understudied. Despite the 
low number of spring season studies on forestlands in Oregon, the 
highest levels of pesticides are frequently observed during springtime 

runoff periods (Hapke et al., 2016; Kelly et al., 2012). 
During spring and early summer in Oregon, changes in water tem

perature cue reproduction in several freshwater and estuarine species 
(bivalves, pacific lamprey, etc…) that inhabit coastal watersheds (Allard 
et al., 2017; Meeuwig et al., 2005). Since reproduction and larval life 
stages of aquatic organisms are considered the most sensitive to chem
ical contaminants (Bringolf et al., 2007; Cope et al., 2008; Perry and 
Lynn, 2009), understanding in-water concentrations of current-use 
herbicides during time periods coinciding with spring spray is critical 
to assess relative threats to non-target aquatic species. 

Integrative sampling is a valuable method to explore in-water 
pesticide presence from pulsed exposures during a fixed timeframe, to 
detect hydrophilic compounds easily missed in grab sampling, and to 
capture compound mixtures to identify diffuse contaminant sources 
(Alvarez, 2010; Metcalfe et al., 2019). Since seasonal and annual 
monitoring across the Coast Range is time consuming and limited by 
funding constraints, modeling existing monitoring data can extrapolate 
measured concentrations to unsampled areas. Modeling results, though 
simplified representations, can predict exposure at multiple scales and 
guide future monitoring efforts addressing exposure from cumulative or 
mixed effects. 

A previous phase of this project explored herbicide runoff during the 
spring spray season (six week deployment) to understand differing 
exposure of bivalves to current-use forestry pesticides based on man
agement regime (Scully-Engelmeyer et al., 2021). Using integrative 
passive water sampling, we detected four current-use herbicides 
downstream from actively managed catchments, which, along with bio- 
monitoring efforts, allowed us to examine bivalve exposure in Oregon 
coastal watersheds (Scully-Engelmeyer et al., 2021). We explored 
watershed variables related to management and physical characteristics 
to explain variation in herbicide detections in passive water samples and 
found that slope and active notifications for aerial herbicide application 
during the deployment window were the two best individual predictors 
of total herbicide accumulation in passive water samplers. In this study 
our goal was to demonstrate an application of publicly available man
agement data to explore the scale effects of management intensity in 
watersheds on predicted herbicide exposure in downstream waterways. 
Here we develop a multiple linear regression model to explain relative 
pesticide concentrations and: (1) identify whether management vari
ables can be used in combination with watershed variables to explain 
the variation in detected concentrations, (2) assess spatial variability in 
modeled predictions of the relative presence of herbicides in un-sampled 
coastal watersheds, and (3) identify the scale effects and regional pat
terns in measuring predicted concentrations. Additionally, we examine 
detected herbicides in the context of other protected and valuable 
aquatic resources in the study location. We expect that variables related 
to herbicide use and watershed slope in upstream forestlands will best 
predict downstream concentrations detected in POCIS sampling, and 
that regional differences in measured pesticide concentrations will be 
reflected in predicted concentration values. 

2. Methods 

2.1. Study location 

The largely forested Coast Range region of Oregon encompasses the 
majority of Oregon’s coastal watersheds (Spies et al., 2002). The 
defining feature is the Coast Range Mountains, which separate the 
coastal watersheds from the inland portion of the state, both topo
graphically and climatically (Franklin and Dyrness, 1973). Unlike other 
regions in Oregon, drainage basins in the Coast Range (aside from some 
sections of the Umpqua) are dominated by forestland from headwater to 
mouth (Spies et al., 2002). This unique geographic scenario provides a 
valuable and unique opportunity to explore how forestland management 
practices affect watershed health at multiple scales, without excessive 
confounding factors from widespread interspersed agricultural or urban 

Table 1 
Herbicides commonly applied during spring months in forestlands during 
vegetation management applications (site preparation and pre-emergent (Pea
chy, 2020)).  

Herbicide Compound Name Common 
Product 
Names 

Target 
vegetation 

Application rate 
(active 
ingredient per 
acre) 

2-ethylhexyl ester of 2,4- 
Dichlorophenoxyacetic 
acid (2,4-D) 

Weedone LV- 
4, Weedone 
LV-6 

Broadleaf 
weeds and 
woody plants 

1–2 lb 

Atrazine Aatrex 4L, 
Atrazine 4L, 
Atrazine 90 

Grasses and 
herbaceous 
plants 

3–4 lb. 

Clopyralid Transline Herbaceous 
plants 

0.19–0.49 lb. 

Glyphosate Rodeo, 
Roundup 

Grasses and 
broadleaf 
weeds 

1.5–3 lb. 

Hexazinone Velpar L, 
Velpar DF 

Herbaceous 
and woody 
plants 

1–3 lb. 

Indaziflam Esplanade F Broadleaf 
weeds and 
grasses 

0.73–1.46 oz. 
(not–exceed 10 
oz./a of product 
annually) 

Sulfometuron-methyl Oust, Oust 
XP 

Grasses and 
broadleaf 
weeds 

1.5–3 lb. 
0.375–0.94 oz. 

Triclopyr Garlon 4 
Ultra 

Woody plants <6 lb. ae 
(triclopyr) = 6 
quarts  
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land uses. 

2.2. Passive water sampling 

Sixteen catchments associated with four main watershed areas were 
selected for passive water sampling to encompass a range of active 
forestland management across multiple scales and different latitudes in 
the Coast Range (Fig. 1). Integrative passive water sampling was utilized 
to capture episodic chemical exposure in selected catchment areas. Polar 
organic chemical integrative samplers (POCIS) were deployed (three 
replicate disks per sample) for six weeks beginning March 26–29, 2019; 
samplers were retrieved in identical deployment order. POCIS samplers 
use two microporous membranes (0.1 µm pore) to continually capture 
water soluble organic compounds from the water column in a solid 
phase extraction resin (Oasis HLB sorbent) during their deployment 
period. Upon retrieval, POCIS disks were sent to Environmental Sam
pling Technologies (EST; Missouri) for extraction. Composited ampules 
(three disks per ampule) were then sent to Anatek labs (Idaho) for 
pesticide analysis of commonly used forestry compounds (Supplemen
tary Material (SM); Table S1). Field replicates were deployed at three 
randomly selected locations to assess method variance, and field and 
laboratory blanks were implemented to assess unintended contamina
tion during field work and processing. Deployment, retrieval, and 
quality control measures were implemented in accordance with the 
guiding document on POCIS monitoring developed by the United States 

Geological Service (USGS) (Alvarez, 2010). Detailed processing and 
extraction information can be found in Scully-Engelmeyer et al. (2021). 

During the POCIS deployment period, a severe spring storm blan
keted south coast watersheds, raising river levels and causing flooding 
and landslides (FEMA 4452-DR-OR). Upon receding, POCIS canisters at 
two sites (west fork Millicoma River: MA.1, and north fork Smith River: 
SH.1) were partially stranded on the bank where they had been depos
ited while river levels were elevated. Oasis HLB media were still intact in 
those canisters, so they were processed and included in the results. The 
submerged sampling interval for those canisters cannot be determined, 
so concentrations may under-represent exposure over the 45 day sam
pling period. Additionally, the membranes and HLB media in the Euchre 
Creek canister (Siletz River: SZ.2) were destroyed during the deploy
ment period, restricting analysis of sampling results at that site. 

2.3. Model development 

2.3.1. Catchment characterization 
Catchment areas above sampling locations were delineated using 

USGS’s online StreamStats application: Streamflow Statistics and Spatial 
Analysis Tools for Water-Resources Applications (Version 4). De
lineations calculated basin characteristics within catchment areas using 
continuous parameter grids based on 30 m Digital Elevation Models 
(DEM) (Cooper, 2005; Risley et al., 2008). Variables such as annual 
precipitation, slope, and elevation were calculated in this way (Table 2). 

Fig. 1. Simplified land use zoning classes and watershed areas sampled using integrative passive water samplers. Outlined area shows modeling study area.  
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Additionally, drainage density and length of roads were automatically 
calculated during delineation (Cooper, 2005; Risley et al., 2008). Arc
Map version 10.7 was used to determine and export additional charac
teristics above sampling locations based on catchment delineations from 
StreamStats. Forest loss data ((Hansen et al., 2013) version 1.7) was 
imported to ArcMap and converted to polygons. Forest loss from 2016 to 
2019 was selected, clipped within study watersheds, and exported. 
Oregon Department of Forestry hazard slope shapefiles indicating slope 
above 40 % were used to develop a steep slope variable (Table 2). 

Notifications regarding management activities taking place on state, 
private, and tribal lands are recorded and publicly available through the 
Forest Electronic Reporting and Notification System (FERNS), and ac
tivities on federal lands are accessible through the U.S. Forest Service 
Activity Tracking System (FACTS) database and a separate online record 
system for U.S. Bureau of Land Management (BLM) lands. Notification 
data available in the FERNS dataset outlines types and date ranges of 
planned management activities, implementation methods, and potential 
chemicals proposed for use (in the case of pesticide application notifi
cations). Additionally, polygon and line shapefiles, available from the 
Oregon Department of Forestry’s spatial data library, contain notifica
tion identification numbers matching pesticide application notifications 
available from FERNS. The exact date and precise chemical mixtures 
used in the final activity are not included in this notification data. FERNS 
notification data were sorted and filtered in excel to encompass the 
desired timeframes and activity types, then categorized into watershed 
variables for analysis. Sorted data were imported into ArcMap and 
joined with FERNS polygons based on identification number; only 
matching records were retained. Polygons were then re-selected based 
on desired activity type to exclude irrelevant activities that were inad
vertently retained under the same NOAP id number during the first step. 
Remaining polygons were aggregated (using the Dissolve tool) and 
clipped to watershed boundaries; the Identity tool was used to compute 
the variables within study watersheds. Final polygons for each variable 
were catalogued, exported, and prepared for regression analysis. 

2.3.2. Best fit model development 
Multiple linear regression analysis was chosen as it offers a simplified 

and clearly interpretable estimation of variable/response relationships. 
Independent variables (Table 2) were scaled, and the dependent variable 
was square root transformed to meet regression assumptions. 

Correlation matrices were used to investigate relative correlation be
tween total accumulation in water samples and environmental variables 
as well as multicollinearity of environmental variables. Additive re
lationships were explored using manual forward selection stepwise 
multiple linear regression until coefficient of determination explained 
close to 90 % of the variation. Since scale is one of the primary output 
explorations, it was critical to rule out watershed size as a predictor in 
developing the model. The final model assumptions of normality and 
multicollinearity were tested using a Shapiro test of residuals and vari
ance inflation factors (VIFs). Remaining model assumptions of skewness, 
kurtosis, and heteroscedasticity were tested using the Global Validation 
of Linear Models Assumptions (GVLMA) package. Model validation was 
done using the leave-one-out cross validation method (LOOCV). LOOCV, 
a configuration of k-fold cross-validation wherein models are developed 
for each data point in the input dataset, was chosen for its utility in 
working with small datasets. 

2.4. Model application 

Based on the best fit model, independent explanatory variables were 
calculated and projected across the entirety of the Coast Range province. 
Hydrologic Unit Code (HUC) catchments at 8, 10, and 12 digit scales 
from the Watershed Boundaries Dataset (WBD) were then overlaid 
above Coast Range watersheds, defining the study area. Within the 10 
and 12 digit scales, HUC unit boundaries used in model analysis were 
restricted to catchments containing a complete drainage area to avoid 
misapplication of model output on HUC units representing partial 
watershed context (Omernik et al., 2017). This method was applied to 
avoid misrepresentation of downstream HUC segments as complete 
watersheds when they are more accurately defined as partial catchment 
units. HUCs modeled using this selection method represent complete 
catchments at small (HUC 12), medium (HUC 10), and large (HUC 8) 
scales within the Coast Range. Ratios of each predictor variable were 
calculated separately within each HUC across the three scales and 
exported to excel. Variable values for each catchment were then used to 
calculate the predicted concentration within each HUC unit based on the 
best fit model formula. 

2.5. Model output analysis 

2.5.1. Comparing model output across scales 
Final model variables were calculated within each HUC scale across 

the study area, exported to excel, and imported to Rstudio (version 
4.0.4) to calculate predicted values. Predicted values within each 
catchment across the three scales were displayed in choropleth format 
across the study area to visually explore patterns of predicted exposure 
at the three scales investigated. Non-parametric Kruskal-Wallis one-way 
analysis of variance was used to compare the predicted values at the 
HUC 8, 10, and 12 digit scales, and relative distribution was explored via 
density plots. 

2.5.2. Exploring regional differences in variables and model outputs 
Ratio values of each predictor variable, calculated within each 

watershed scale, were displayed in a series of choropleth maps of the 
area to explore regional differences among predictor variables across 
scales. Density plots were used to compare relative distributions of each 
predictor variable among scales. Predicted values projected within HUC 
boundaries across the coast range were displayed via choropleth map
ping to visually explore regional differences in predicted exposure. HUC 
12 catchments were then grouped into HUC 8 categories to explore how 
predicted values at the small catchment scale match up within larger 
drainages/subbasins across the study area. Kruskal-Wallis analysis of 
variance was used to compare predicted values in the smaller catch
ments (HUC 12 subwatersheds) across the HUC 8 subbasins (as the 
grouping variable). 

Table 2 
Watershed characteristics - including physical variables calculated above each 
sampling location and management variables at each location - used in regres
sion analyses. dv = dimensionless variable, km2 = square kilometer.  

Watershed Characteristics Abbreviation Unit 

Physical Variables 
Area area Km2 

Steep slopes (slope above 40 %) slp_abv % 
Road density rd_den dv 
Drainage density (Σ stream length / watershed area) drn_den dv 
Forest loss floss % 
Stream temperature change (between deployment 

and retrieval) 
avtemp_c Celsius 

Average annual precipitation precip_cm centimeters 
Management Variables 
Area notified for clearcut within 1 year of 

deployment 
cc1yr % 

Area notified for clearcut within 3 years of 
deployment 

cc3yr % 

Area notified for herbicide application during 
deployment 

allherb_dep % 

Area notified for aerial herbicide application during 
deployment 

aerial_dep % 

Area notified for herbicide application within 1 year 
of deployment 

allherb_1yr % 

Area notified for aerial herbicide application within 
1 year of deployment 

Aerial_1yr %  
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3. Results 

3.1. POCIS deployment and detections 

Of the fourteen herbicides and one surfactant included in POCIS 
canister analyses, four commonly applied herbicides were detected 
(hexazinone, atrazine, sulfometuron methyl, and metsulfuron methyl). 
Herbicides were detected at 80 % of sample locations (Table 3). De
tections ranged from 1.16 to 936 ng/POCIS, averaged 277 ng/POCIS, 
and varied across locations (Table 3). Concentrations were not detected 
in field or laboratory blanks. 

3.2. Model development 

Correlation matrices and Pearson’s correlation suggest strong re
lationships between total detected herbicide concentrations in POCIS 
samplers and upstream watershed variables, as well as collinearity 
among variables (Appendix 1A & B). Manual additive multiple regres
sion analysis determined that a model with three independent variables 
best predicted total herbicide accumulation in passive water samplers 
without violating multicollinearity assumptions. A multiple linear 
regression was determined to predict total herbicide accumulation 
based on watershed characteristics including within the last year 
(cc1yr); (F (3, 8) = 31.1, p < 0.000), with an R2 of 0.8914. POCIS pre
dicted concentration = 15.016 + (3.854 *slp_abv) + (5.212* allherb_
dep) + (4.855 *CC1yr), where all variables are measured as percentages 
of upstream catchment areas and were significant predictors of total 
concentration. Variable inflation factors (VIF) for final variables were 
1.460, 2.001, and 1.463 for slp_abv, allherb_dep, and CC1yr respec
tively, indicating no multicollinearity issues with covariates. Cross 
validation using LOOCV resulted in a model root mean squared error of 
4.567 ng/POCIS, a mean absolute error of 3.783 ng/POCIS and an R2 of 
0.8358. 

Overall, variables within HUC 12 watersheds displayed the largest 
ranges across all categories, followed by HUC10 and HUC8 scales 
(Fig. 2A, B & C, Table 4). Though ranges varied widely between scales, 
no significant differences were seen among HUC group means for any of 
the predictor variables based on Kruskal—Wallis tests (Table 4). 

3.3. Model predicted concentration values 

Predicted concentrations based on the best fit multiple regression 
model produced values ranging from 0.1 to 2445.1, and averaged 299.6 
ng/POCIS across all categories (Table 4). Similar to predictor variables, 

the largest ranges were seen in HUC12 watersheds, followed by HUC10 
and HUC8. No significant differences were observed between watershed 
scales (Table 4, Fig. 3B). Predicted values varied geographically, with 
the highest values seen in the southern portion of the study area across 
all three scales (Fig. 3A). Comparisons of HUC 12 predicted values 
grouped by HUC 8 catchment indicate regional differences in predicted 
concentrations, wherein predicted values in the Coos watershed were 
significantly higher than the group mean, and those within Wilson- 
Trask-Nestucca were significantly lower (Fig. 4). The highest overall 
predicted values were seen within sub-watersheds of the Umpqua 
watershed. 

4. Discussion 

4.1. Passive water samples and independent variable correlation 

Concentrations of four commonly applied current use forestry her
bicides detected in passive water samples during the spring of 2019 
ranged across watersheds and at least one compound detected above 
reporting limits in 80 % of the samples (12/15 of samples; Table 3). 
Correlation matrices indicated many correlative relationships between 
total accumulation in samplers and independent watershed character
istics, as well as among watershed variables. In many instances catch
ment size is an important predictor in aqueous pesticide concentrations 
(Schulz, 2004), but in this case watershed size was not correlated with 
total accumulation in POCIS canisters, signifying that an exploration 
into factors across multiple scales would be appropriate for these data 
(Appendix 1A). Another explanatory variable that did not correlate with 
accumulation was road density, which is important to note as roadside 
spray activities are considered a potentially confounding source of 
herbicide runoff in watersheds (Huang et al., 2004; Massoudieh et al., 
2005) (Appendix 1A). 

4.2. Final explanatory variables 

Multiple linear regression revealed that watershed variables steep 
slopes and notified herbicide and clearcut activity best predicted her
bicide accumulation in passive water samplers. LOOCV analysis deter
mined a mean absolute error of 3.783 ng/POCIS, suggesting a relatively 
low magnitude or error in the predictive capacity of the final model. 
Watershed slope is an important factor in determining runoff potential 
within watersheds (Dabrowski et al., 2002; Zhang and Zhang, 2011), so 
it’s significance in predicting pesticide exposure is logical. Additionally, 
small scale watershed research indicates that steep slopes significantly 
increase herbicide loss due to runoff (Müller et al., 2004). Herbicide 
concentration correlated with notified clearcut activity during the pre
vious year, suggesting that site preparation treatments (which occur 
within the first year post-harvest, before reforestation (Rose and Haase, 
2006)) may have contributed to herbicides detected in integrative 
samplers. Herbicide applications notified during the deployment period 
was the final predictor in our multiple regression model. Based on the 
time of year, active notifications during the sampling window (March- 
May) were likely comprised of pre-emergent (dormant) applications to 
help established plantations, as well as site preparation treatments. 

Final model variables displayed spatial variability (observable in 
Fig. 2) suggesting regional differences in management (recent clearcuts 
and herbicide usage) and physical watershed characteristics (slope) 
within the Coast Range. Steep slopes were most prominent in the north 
coast watersheds at the HUC 10 and 12 scales near the Kilchis and 
Wilson rivers (Fig. 2A). Notified herbicide activity was highest in south 
coast watersheds, especially in tributaries of the Smith, Siuslaw, and 
Umpqua Rivers (Fig. 2B). Clearcuts notified within the previous year 
were noticeable throughout the study area, with the highest percentages 
seen in the Nehalem watershed in the north coast, Siletz watershed in 
the mid coast, and near the Coquille and Sixes rivers in the south coast 
(Fig. 2C). The combined additive effects of these variables across the 

Table 3 
Herbicides detected in POCIS samples. Sample locations are organized from 
north to south along the coast. SMM = sulfometuron methyl, MSM = metsul
furon methyl, RL = reporting limit. RL = 1 ng/POCIS for each compound shown.  

Sampling 
Location 

ng/POCIS  

Atrazine Hexazinone SMM MSM Total 
Accumulation 

NM.1 11.93 <RL 1.8 <RL 13.7 
NM.4 6.05 1.09 <RL <RL 7.1 
NM.5 <RL <RL <RL <RL <RL 
NM.6 <RL <RL <RL <RL <RL 
SZ.1 <RL 38 <RL <RL 38 
SZ.3 <RL 14 <RL <RL 14 
SH.1 <RL 11.6 1.55 <RL 13.2 
SH.2 131 816 36.3 1.4 984.7 
SH.3 139 212 1.92 <RL 352.9 
SH.4 164 103 2.78 <RL 269.8 
WY.1 466 963 1.16 <RL 1430.2 
MA.1 <RL <RL <RL <RL <RL 
MA.4 185 117 <RL <RL 302 
MA.5 253.3 117.3 <RL <RL 370.6 
CB.1 232 138 <RL <RL 370  
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landscape served as indicators of predicted herbicide concentration 
based on the measured sampling window. Across the three scales, the 
widest ranges of variables were observed within the HUC 12 watersheds 
followed by the 10 and 8 scales. This is not surprising since smaller 
catchments are more prone to dominance by single land use types/fea
tures, which can translate to higher and lower values of these variables. 
At larger scales, the complexity of the landscape has a dampening effect 
on the range of individual variables, as they are averaged across the 
entire watershed. Across scales, mean values for each variable were not 
significantly different (Table 4). 

4.3. Model outputs/predicted concentration values 

Similar to individual independent variables, predicted concentration 
values based on regression model output displayed regional differences 
in high values. Catchments in the Umpqua, Coos, and Smith river wa
tersheds displayed the highest values at the HUC 12 scale, followed by 
tributaries within the Alsea and Sixes river watersheds (Fig. 4). At the 
HUC 10 scale, the upper Smith River had the highest predicted value 
followed by a number of other headwater catchments in the central and 
south coast. HUC 8 predicted herbicide concentrations were highest in 
south coast watersheds. Data structure of predicted concentrations was 
similar to predictor variables, wherein HUC 12 catchments displayed the 

Fig. 2. Percentage of each catchment with steep slopes (A), herbicide notifications during deployment window (B), and clearcuts within a year of deployment (C) 
were calculated across three HUC scales within the study area. Density distributions reflect un-transformed variables. 
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largest ranges of values, followed by HUC 10 and 8 scales (Fig. 3). 
Despite differences in range, differences among scales were not signifi
cant (Table 4), which is not surprising given the nested nature of the 
HUC watersheds in the study area. Predicted concentrations calculated 
across scales based on watershed slope, herbicide activity, and notified 
clearcuts highlights the importance of looking at potential impacts to 
aquatic ecosystems from a landscape pattern perspective, beyond the 
site level. 

Subwatersheds (HUC 12) grouped by subbasin (HUC 8 scale) allowed 
for quantification of regional differences in predicted values (Fig. 4). In 
our analysis, South coast watersheds had higher average predicted 
concentrations than mid or north coast watersheds, but Coos was the 
only HUC8 group significantly higher than the base mean, and the 
Wilson-Trask-Nestucca was the only watershed group with significantly 
lower predicted concentrations (Fig. 4). Regional patterns from this 
analysis are similar to field-collected data, wherein south coast locations 
exhibited higher on average concentrations compared with mid and 
north-coast counterparts. These observations may represent the amount 
of active management taking place in southern watersheds or could be 
an artifact of spray timing/management differences between the areas. 

4.4. Other aquatic resources across scales 

Considerations of the spatial configuration of landscape variables 
(land use, management, environmental characteristics) are critical in 

understanding anthropogenic activities threatening watershed water 
quality, ecological processes, and aquatic resources (Lee et al., 2009). 
Within the context of the Oregon Coast Range, watershed scale aquatic 
resources exist at multiple points along stream networks, and are 
therefore influenced by upstream conditions at multiple scales. Inter
preting potential impacts to these resources at the scales in which they 
are found is challenging, especially given the wide range of ownership, 
management, and physical watershed characteristics in upstream 
drainages. Study results suggest that the potential for both higher and 
lower herbicide exposure is greater at smaller watershed scales, but 
overall watershed size does not impact the average exposure among the 
three scales investigated. Our investigations provide predicted concen
trations at established HUC scales, but on the, resources exist indepen
dent of established scale boundaries such as the HUC system. Fig. 5 
offers a subset of Oregon Coast Range aquatic resources, such as 
drinking water sources (surface and groundwater), salmonid runs, and 
aquaculture areas within watersheds, which are influenced by catch
ments of various sizes. Drinking water originating from surface water is 
a good example of a resource that, though permitted and collected at a 
specific point, is influenced (and potentially threatened) by upstream 
catchment characteristics such as land uses and practices (Lari et al., 
2014). As indicated in Fig. 5, herbicide detections at sampling locations 
varied along the coast, with the highest values seen at the south coast 
sites. Furthermore, this figure illustrates the overlapping nature of 
detection sites and other aquatic resources within the Coast Range. 

4.5. Model applicability 

This investigation into springtime herbicide exposure across multiple 
scales in coastal watersheds is one of many potential avenues of inquiry 
into non-point source pesticide pollution, and like many monitoring and 
modeling efforts is limited by available data. Our sampling window 
characterizes one time period, and though results are useful in 
explaining relationships between upstream variables and observed 
concentrations, considerable inter-annual variation in management ac
tivities throughout the Coast Range introduces uncertainty about the 
suitability of our model to other timeframes or regions. Inconsistency in 
management regimes applied to Oregon forestlands based on de
velopments in ownership, guiding regulations/practices, and technol
ogy throughout time present a complicated picture of the landscape 
ecology in coastal watersheds. Harvest rotations for contemporary 
intensive forest management are generally 30–50 years long, and over 
the timeframe of one harvest cycle, updates to methodology and regu
lations can evolve. Our results provide insight into herbicide movement 
through the water column during a 45-day deployment period, and 
associated catchment variables that can predict concentrations in this 

Table 4 
Summary statistics for final predictor variables [steep slopes above 40 percent 
(slp_abv), area notified for herbicide application during deployment (allherb_
dep) and area notified for clearcut within 1 year of deployment (cc1yr)] and 
predicted values in each HUC level.  

Watershed size Predictor variables: x (range) Model 
predicted 
values (ng/ 
POCIS)  

slp_abv (%) allherb_dep 
(%) 

cc1yr (%)  

HUC8 25.7 
(15.5–33.0) 

1.5 (0.4–3.2) 0.89 
(0.5–1.3) 

294.6 
(99.5–516.8) 

HUC10 29.6 
(5.6–72.2) 

1.5 (0–8.5) 0.8 
(0.1–1.8) 

289.0 
(17.3–1301.8) 

HUC12 27.8 
(0.2–79.4) 

1.7 (0–16.8) 0.96 
(0–4.28) 

303.5 
(0.1–2445.1) 

Overall 28.1 
(0.2–79.4) 

1.65 
(0–16.8) 

0.9 
(0–4.28) 

299.6 
(0.1–2445.1) 

Kruskal—Wallis H(2) =
0.704, p =
0.7033 

H(2) =
0.315, p =
0.8538 

H(2) =
0.316, p 
= 0.8542 

H(2) = 2.1409, 
p = 0.3428  

Fig. 3. Model predicted concentrations across HUC 8, 10, and 12 scales in the Coast Range (A), and compared in a density distribution plot (B).  
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context, but herbicide movement during other times of year as well as 
during the same time frame across years may not be well characterized 
by these data. 

Our results suggest fundamental connections between landscape 

patterns of watershed management/characteristics and downstream 
pesticide exposure can be predicted based on relatively simple in
dicators, but the applicability of these indicators (slope, herbicide use, 
and clearcuts) in different regions remains elusive. For example, our 

Fig. 4. Predicted concentration values within HUC 12 catchments grouped by HUC 8 watersheds with multiple pairwise tests against the base mean. Abbreviations: 
ns = not significant, * = p ≤ 0.05. 

Fig. 5. A subset of aquatic resources in the Coast Range, and the various scales they occupy. Total herbicide accumulation detected in POCIS samplers (ng/POCIS) is 
overlaid at sampling locations. Data sources: Oregon Department of Fish and Wildlife, Oregon Department of Environmental Quality, Oregon Department of 
Agriculture. 
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model may not be useful beyond the southern portion of the Coast Range 
region (past Cape Blanco to the south), where biogeographical, man
agement and climatic differences in the landscape makeup likely impact 
the ability of this regional specific model in predicting movement of 
pesticides in watersheds. Similarly, in eastern portions of the state, 
federal and state forestry herbicide use regulations diverge from coastal 
provisions (US Bureau of Land Management, 2010) (OAR 629-642- 
0400), which coupled with differing in biogeographical features 
(Franklin and Dyrness, 1973) between regions further constrain model 
applicability. However, data collection in these areas and other seasons 
could be utilized to build similar predictive models. 

Factors described above may limit the applicability to other regions 
of the specific model developed in this study. However, the model serves 
to demonstrate the efficacy and application of publicly available land 
management data to predict water quality conditions to view cumula
tive effects of management activities in watersheds. Region-specific 
models may be developed using similar publicly available data to raise 
awareness and support policy development to address environmental 
contaminants. By basing this analysis on simplified but clearly inter
pretable variable/response relationships provided by multiple linear 
regression, this research promotes a unique way to engage with publicly 
available data in illustrating the connection between management in
tensity and watershed health. 

5. Conclusions 

In this investigation we found that a physical watershed variable 
(steep slopes) coupled with notified forestland management activities 
(herbicide use and clearcut harvest) successfully predicted measured 
herbicide presence (R2 = 0.8914) during the spring spray period (March 
to May). These results highlight connections between spatial landscape 
patterns of environmental factors, anthropogenic land-uses, and offsite 
herbicide movement in coastal watersheds in Oregon. When applied to 
unsampled watersheds in the same region, predicted concentrations 
from our model exhibited similar spatial patterns as measured concen
trations, wherein south coast watershed displayed higher on average 
concentrations compared to mid and north coast watersheds. Across 
three watershed sizes (scales) we found that the greatest ranges in pre
dicted values were seen in smaller catchments (HUC 12), followed by 

medium and large catchments (HUCs 10 & 8), but the average concen
trations did not differ among scales. The final model provides insight 
into patterns of herbicide use and movement in coastal watershed in 
Oregon, but its application is constrained by the sampling window from 
which the data were derived, small sample size, and the region-specific 
context. Furthermore, herbicide detections overlap with important 
aquatic resources, highlighting the need for further research to deter
mine effects of transported herbicides on these resources. This research 
demonstrates the importance of approaching interpretation of non-point 
sources of pollution at appropriate landscape scales and contexts. 
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Appendix A 

A & B: Correlation matrices of physical (A) and management (B) watershed variables with total herbicide accumulation (totalng). Variable ab
breviations are provided in Table 2 of the document. 
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